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ABSTRACT

In this paper, we consider two methods to improve an algo-
rithm for bass saliency estimation in jazz ensemble record-
ings which are based on deep neural networks. First, we
apply label propagation to increase the amount of training
data by transferring pitch labels from our labeled dataset to
unlabeled audio recordings using a spectral similarity mea-
sure. Second, we study in several transfer learning exper-
iments, whether isolated note recordings can be beneficial
for pre-training a model which is later fine-tuned on en-
semble recordings. Our results indicate that both strategies
can improve the performance on bass saliency estimation
by up to five percent in accuracy.

1. INTRODUCTION

Recent developments in the field of machine learning, in
particular deep learning, stimulated a significant perfor-
mance boost in various Music Information Retrieval (MIR)
tasks [7] such as audio tagging [23], audio source separa-
tion [27], and automatic music transcription (AMT) [15].
One major challenge in training deep neural networks
(DNNs) that generalize well to unseen data lies in the large
amount of required labeled training data, which is often not
available.

In this context, semi-supervised learning strategies can
help to solve this data problem. A first approach is to ap-
ply transfer learning, i. e., training a network on a related
classification task and fine-tune the model parameters for
the target task with the (usually smaller) amount of train-
ing data at hand [10, 18]. Both training steps are fully su-
pervised and therefore require labeled datasets. A second
approach is label propagation, where labels from labeled
feature vectors are propagated to unlabeled feature vectors
if some pre-defined similarity measure exceeds a particu-
lar threshold. Label propagation can help to significantly
increase the amount of available training data.

In this paper, we focus on the task of estimating the
pitch salience of the bass instrument in jazz ensemble
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Figure 1. Flowchart summarizing the main idea of training
a deep neural network to learn a mapping function from a
constant-Q spectrogram of a jazz ensemble recording (left)
towards a bass pitch saliency representation (right) using a
deep neural network.

recordings. In general, pitch saliency refers to a likelihood
measure of an instrument playing certain pitch frequen-
cies at given times. Figure 1 illustrates the DNN-based
approach that we use. Given a time-frequency represen-
tation of an audio recording of a jazz ensemble, the goal is
to estimate a bass salience representation in a frame-wise
fashion. As outlined in [1], these frame-wise estimates of
the bass saliency can then be aggregated using beat anno-
tations to obtain a beat-wise pitch representation, which is
a musically meaningful approximation of the commonly
played walking bass lines in jazz music.

As the main contributions of this paper, we investigate
transfer learning and label propagation strategies for im-
proving fully-connected deep neural networks for the task
of bass saliency estimation, as shown in Figure 2. Both
techniques aim to compensate the lack of available la-
beled data for the task of bass salience estimation. For
label propagation, the core idea is to enrich an unlabeled
dataset with labels from a labeled dataset. For transfer
learning, we investigate whether training models on mu-
sic data of lower timbral complexity (e. g., isolated instru-
ment tones) is beneficial for transferring them to complex
mixture recordings.

The remainder of this paper is structured as follows. In
Section 2, we review related work. In Section 3, we in-
troduce the underlying datasets used throughout our ex-
periments and propose additional data augmentation steps.
Section 4 introduces the feature extraction approach, DNN
architecture, and the evaluation methodology. In Section 5,

306



Pre-Training

!

Training

!∗

Labeled Dataset Unlabeled Dataset

Label Propagation Transfer Learning

Best
Similarity
Measure

Figure 2. Illustration of label propagation and transfer learning. In label propagation (left), an unlabeled audio dataset is
enriched with frame-wise pitch labels from a labeled dataset. In transfer learning (right), a DNN is first pre-trained on a
dataset with lower complexity (isolated bass recordings) and then trained further on jazz ensemble recordings.

we present experiments towards hyperparameter optimiza-
tion (Section 5.1), label propagation (Section 5.2), as well
as transfer learning (Section 5.3). Finally, Section 6 con-
cludes our work and gives perspectives towards future
work.

2. RELATED WORK

Salience representations are a common intermediate rep-
resentation in many automatic music transcription (AMT)
systems prior to the formation of note events. Most previ-
ous approaches for bass saliency estimation rely on hand-
crafted algorithms rather than on automatically learnt map-
pings. For instance, Goto derives pitch saliency values
from predominant peaks in a spectral representation based
on instantaneous frequency values [13]. Ryynänen and
Klapuri compute a saliency measure for a given pitch from
a weighted sum over the spectral magnitude values at its
harmonic frequencies [24]. Salamon et al. apply har-
monic summation based on a logarithmic frequency repre-
sentation combined with instantaneous frequency estima-
tion methods [25].

In [1], the mapping from a constant-Q spectrogram to a
bass saliency function is automatically learnt using fully-
connected deep neural networks. The authors also investi-
gated a semi-supervised learning step where parts of pre-
dicted pitch saliency estimations on unlabeled audio data
were added to the training data based on a sparsity cri-
terion. The modeling strategy was inspired by Balke et
al. [2], who used a similar approach to estimate a saliency
representation of the predominant melody instrument in
jazz music recordings. Bittner et al. [4] proposed a fully
convolutional neural network (CNN) to extract a saliency
representations from different constant-Q transforms used
as input for both multiple fundamental frequency estima-
tion and melody tracking.

Models with state-of-the-art performance in related dis-
ciplines such as image processing (mostly CNN-based
models) are rarely trained from scratch due to the large
amount of required training data. Instead, only the last

Dataset Usage Labels # Feature Vectors Duration [h]

ISO+ Training X 448,626 5.79
WJD+ Training X 305,507 3.94
WJD− Training - 500,000 6.45

WJD+-TEST Test X 8,318 0.1

Table 1. Summary of the datasets. The number of feature
vectors after data augmentation and voiced frame selection
as well as the corresponding duration in hours is given in
the last two columns. For the WJD− dataset, 500,000 fea-
ture vectors were randomly selected due to memory limi-
tations on the hardware in use for the experiments.

layers of existing “general purpose” classification models
(such as the ImageNet model [9]) are fine-tuned for re-
lated classification tasks using smaller amounts of training
data [21]. Similarly, in the field of MIR, Choi et al. [8]
used a pre-trained CNN-based feature extractor trained on
music tagging data for related music classification and re-
gression tasks. However, for the task of AMT, no such
general-purpose model was established so far.

3. DATASETS

The spectral characteristics of the targeted upright bass
tones are affected by different factors of variation such as
the pitch, the loudness, as well as the overlap with tones
from simultaneously playing instruments. In our consid-
ered datasets, we use different sets of upright bass record-
ings that try to address these variations. All considered
audio files used in this paper include an acoustic upright
bass played with the plucked (pizzicato) plucking style—
as opposed to using a bow—as this is the common playing
style for jazz bass players. Table 1 gives an overview of
the datasets used, which we discuss in the following.

3.1 Isolated Upright Bass Recordings (ISO+)

The ISO+ dataset is a collection of isolated chromatic note
recordings. The recordings stem from various commercial
and non-commercial upright bass sample datasets: Adam
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Figure 3. Pitch histogram over labeled datasets ISO+,
WJD+, and WJD+-TEST after data augmentation. Total
duration of all notes in minutes is shown for each pitch.

Monroe’s Upright Bass Sample Library , Meatbass , Tril-
lian , Steinberg Halion Symphonic Orchestra, and SWAM
Double Bass. Furthermore, we collected recordings from
the Real World Computing Music Database (RWC) [14],
the McGill University Master Samples [11] and the Iowa
Classical Instrument Samples 1 .

3.2 Jazz Ensemble Recordings (WJD)

The Weimar Jazz Database (WJD) contains 456 manually
transcribed solos from famous jazz recordings [22]. For a
subset of 40 of these recordings, excerpts of walking bass
lines using the Sonic Visualiser software [6]. All of the
selected recordings are typical jazz ensembles that consist
of upright bass, drums, piano, as well as melody instru-
ments such as trumpet or saxophone. We use 30 of these
annotated recordings for training (WJD+) and 10 for test-
ing (WJD+-TEST). The remaining 416 recordings from
the WJD are denoted by WJD−. These recordings come
without bass pitch annotations and will be used in the label
propagation experiment detailed in Section 5.2.

3.3 Data Augmentation

On the datasets that we use for supervised training (ISO+

and WJD+), we generated 15 augmented versions from
each original audio file by combining three time-stretching
settings (stretch factors 0.9, 1, and 1.1) and five pitch-
shifting settings (shifts between -2 and +2 semitones) using
the software package sox 2 .

For all labeled datasets, we discard all non-voiced
frames. Furthermore, we only keep the spectral frames
from the first 75 % of the note duration as especially higher
harmonics from upright bass tones decay much faster than
the fundamental frequency contours. In order to make the
final results comparable to [1], data augmentation is not
applied to the test set WJD+-TEST (compare Section 3).

Figure 3 illustrates the pitch distribution over the three
labeled datasets after applying data augmentation. While
the WJD+ and WJD+-TEST datasets similarly include

1 http://theremin.music.uiowa.edu/MIS.html
2 http://sox.sourceforge.net

Hyperparameter Search Space Importance

Magnitude scaling {linear, logarithmic} 0.015
# hidden layers n ∈ {3, 4, 5, 6} 0.020
Hidden layer size H = 2h, h ∈ {7, 8, 9, 10} 0.040
Learning rate α = 10r, r ∈ [−3,−6], (-4.27) 0.485
Batch normalization {no, yes} 0.017
`2 weight regularization λ ∈ {0, 10−4,10−3, 10−2} 0.038
Dropout ratio d ∈ [0, 0.5], (0.06) 0.385

Table 2. Search space for hyperparameter optimization.
Optimal parameter set for aval, opt = 0.62 is given in bold
font. Feature importance values in a random forest regres-
sion model are shown in the last column.

notes up to C4, the isolated tones in ISO+ cover a wider
pitch range and distribute among the pitches in a more bal-
anced fashion.

4. METHODOLOGY

4.1 Feature Extraction

Audio files are resampled to 22.05 kHz before constant-Q
magnitude spectrograms are computed with a hopsize of
1024 samples (46.4 ms) and a frequency resolution of 12
bins per octave between 34.65 Hz (MIDI pitch 25, note
D[1) and 1567 Hz (MIDI pitch 91, note G6) using the li-
brosa Python library [19]. Hence, the input vectors have
the dimensionality of 67. In contrast to [1], we extend the
frequency range by a small margin in the low frequency
range and by two octaves in the upper frequency range in
order to incorporate overtone frequencies of higher bass
notes. In Section 5.1 we evaluate, to which extent a loga-
rithmic compression of the magnitude spectrogram is ben-
eficial for bass saliency.

4.2 Deep Neural Network Architecture

Throughout this paper, we use a fully-connected network
architecture for the given task of bass saliency estimation,
see Table 2 for an overview of parameters. The model is a
cascade of n hidden layers of sizeH with optional interme-
diate layers for batch normalization (prior to the ReLU ac-
tivation function) [16] and dropout (dropout ratio d) [26].
In contrast to [1], we do not use frame stacking here as
we aim to directly compare local feature vectors later in
the label propagation step described in Section 5.2. The
model instead processes individual spectrogram frames as
input and predicts the corresponding pitch saliency vector.
Furthermore, all hidden layers have an optional `2 weight
regularization (with regularization parameter λ) [12]. For
each model training, we use 500 training epochs, a batch
size of 250, early stopping with a patience of 25 epochs
based on the validation accuracy, and the categorical cross-
entropy as loss function. The keras 3 Python library is used
for all experiments in this paper.

Score annotations are converted into frame-wise binary
pitch activities, which are used as targets for the model
training. In the annotated datasets used in this paper, bass
lines are strictly monophonic. In the final layer, we use a

3 https://www.keras.io
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Figure 4. Validation accuracy aval and hyperparameter val-
ues for learning rate exponent r, dropout ratio d, magni-
tude scaling, and layer size exponent h over all random pa-
rameter configurations (black dots). Cubic regression lines
(blue dashed lines) show trends in the data. Optimal values
for the other hyperparameters are given in Table 2.

sigmoid instead of a softmax activation function to be able
to model the activity of all pitches independently. This
also allows us to model polyphonic parts or rests within
bass lines. However, in order to compare our results with
[1], we only focus on bass saliency estimation from voiced
frames in this paper and leave bass voicing detection open
for future work.

As pitch range for the targets, we use [26, 69] (notes
D1 to G4) whereas in [1], a slightly smaller pitch range
[28, 67] (notes E1 to F4) was used. The dimensionality of
the target vectors is 44.

4.3 Evaluation

We derive pitch estimates by looking at the highest output
value of the final sigmoid layer. For the evaluation, we use
the standard evaluation measures Raw Pitch Accuracy (de-
noted as a) and Raw Chroma Accuracy (denoted as a12) as
used in the MIREX Audio Melody Extraction task. For the
definition of these measures, we refer to [20]. During train-
ing, we randomly split the training dataset(s) into training
and validation dataset based on a 80:20 split. Accuracy
values atrain, aval, and atest are computed on the training,
validation, and test set, respectively.

5. EXPERIMENTS

5.1 Hyperparameter Optimization

A systematic grid search of possible hyperparameter com-
binations is not feasible for deep neural networks due to
the high computational costs. In our approach, we train
160 models with different combinations of hyperparame-
ters. These combinations are randomly sampled from the
hyperparameters given in Table 2. The best hyperparame-
ter combination is then retrieved by testing the model per-
formance on the validation set (aval). Figure 4 shows the
validation set accuracy for the different hyperparameter
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Figure 5. Label propagation example: given a query
constant-Q spectrogram frame with unknown pitch (bot-
tom, red), candidates with different cosSim similarity val-
ues are shown (above, black). The pitch label B[3 will be
transferred from the most similar candidate shown on top
(s = 0.99).

configurations. To get an intuition about the influence of
the different hyperparameters, we follow an approach pre-
viously presented in [17]. In that approach, a random forest
regression model [5] is fitted to aval over all parameter con-
figurations. From the random forest regression model, we
can obtain the relative importance of all hyperparameters,
see Table 2 (third column) for the results.

As previously found in [17], the learning rate exponent
r is by far the most important hyperparameter (0.485) with
optimal values around 10−4, as shown in Figure 4. Inter-
estingly, as indicated in Table 2, the dropout ratio d also
has a high relative importance (0.385) and an optimal value
only slightly above zero.

5.2 Label Propagation

A first approach to enrich the available amount of training
data is to use label propagation. We derive pitch labels for
feature vectors in the unlabeled WJD− dataset by transfer-
ring labels from their most similar counterparts in WJD+

dataset. To this end, we compute a similarity score si for
the i-th feature vector in the WJD− database xWJD−

i ∈ R67

by maximizing its cosine similarity (cosSim) towards all
feature vectors in the WJD+ database as

si = max
k

cosSim(xWJD−

i , xWJD+

k ). (1)

An example is shown in Figure 5. Given a query spectro-
gram frames (bottom), we show five example spectrogram
frames with different similarity values. The most similar
frame (cosSim = 0.99) shows an almost identical overtone
structure, which motivates the transfer of its pitch label.

As shown in Figure 6, most feature vectors in the un-
labeled WJD− dataset have very similar counterparts in
the WJD+ dataset, which is somewhat intuitive as both
datasets originate from the Weimar Jazz Database (WJD).
We derive three similarity thresholds τ25 = 0.914, τ50 =
0.940, and τ75 = 0.96 from the 25th, 50th, and 75th

percentile of the distribution over s. The label-enriched
WJD− dataset is denoted as (WJD−)+ in the following.

We use the best model architecture obtained via hy-
perparameter optimization (see Section 5.1) and train
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Figure 6. Histogram over best-match cosine-similarity
values for mapping feature vectors from the unlabeled
dataset WJD− to the labeled dataset WJD+. Similarity
thresholds τ25, τ50, and τ75 are derived from the respec-
tive percentiles of the distribution over s.

models from different training sets. For that purpose,
we combine the full WJD+ dataset with feature vec-
tors of the (WJD−)+ dataset based on the criterion
τ− ≤ si ≤ τ+. We test different pairs (τ−, τ+) using
combinations of the percentile-based thresholds τ25, τ50,
and τ75 as well as τ0 = 0 and τ100 = 1 as shown in the
lower subplot of Figure 7.

Feature vectors with lower similarity scores more likely
introduce label noise to the mixed training dataset. Since
the WJD+ dataset only contains voiced frames, even un-
voiced frames in the WJD− will be be mapped to voiced
frames. This is a drawback due to the given dataset config-
urations. Another possible reason for low similarity scores
are notes played by other instruments in the ensemble such
as the piano or the soloist. However, voiced frames from
the WJD− database with a lower similarity can provide
novel information for the classification task, which can
help to improve the existing model. At the same time, fea-
ture vectors with high similarity scores can be redundant
without providing much novel information for the pitch
saliency estimation task. In contrast to [1], label propa-
gation is performed based on feature vector similarity and
not based on predictions of existing models.

From the results shown in Figure 7, we make the fol-
lowing observations for all configurations. First, we ob-
serve that difference between atrain and aval (overfitting)
remains almost constant across different configurations.
Also, the raw chroma accuracy atest,12 is consistently about
0.07 higher than the raw pitch accuracy atest, which indi-
cates that octave errors make up only a small fraction of
the remaining pitch estimation errors.

Using the WJD+ dataset alone or combined with the
most similar feature vectors in WJD− (configurations 0:0
and 75:100), we observe that the training and validation ac-
curacies are clearly higher than the test accuracy. The rea-
son is that these configurations correspond to the best pa-
rameter settings found in the hyperparameter optimization
step (compare Section 5.1), where maximizing aval was the
main objective. Due to their small size, the data distribu-
tion in the WJD+ and WJD+-TEST datasets presumably
is only similar to a certain degree although both are taken
from the Weimar Jazz Database.

In contrast, by adding feature vectors from the WJD−

dataset with lower similarity values and higher novelty
(configurations 0:25, 0:50, and 0:75), the modeling task

0.5

0.6

0.7

A
cc

ur
ac

y

atrain aval atest atest, 12

0:0 0:2
5

0:5
0

0:7
5

25
:10

0

50
:10

0

75
:10

0
25

:75
0:1

00

Lower and upper bound τ− = τi and τ+ = τj denoted as i : j

τ0

τ25

τ50

τ75

τ100

Figure 7. Label propagation results for different dataset
configurations (see Section 5.2). Training accuracy atrain,
validation set accuracy aval, test set accuracy atest, and
chroma pitch accuracy atest,12 are shown.

becomes harder and the training and validation accuracies
decrease. Interestingly, the models’ ability to generalize
to the test set improves and atest increases. The relatively
high difference between validation and test accuracy of up
to 0.09 indicates that the small test set size needs to be
increased in future work, as both, test and validation set,
should come from the same distribution.

For the configurations 0:50 and 0:100, we observe the
highest test accuracy of around atest = 0.57. This result
is notable as by using label propagation, we are able to
train a model which achieves a performance comparable
to the highest test accuracy reported in [1] without requir-
ing additional temporal context information using frame
stacking. Therefore, label propagation seems a promising
approach to improve the model performance.

5.3 Transfer Learning

State-of-the-art music transcription algorithms based on
spectral decomposition algorithms such as Non-Negative
Matrix Factorization (NMF) are commonly initialized with
isolated instrument tones, e. g., for learning spectral note
templates [3]. We aim to investigate to which extent a sim-
ilar strategy can be used to improve neural networks for
pitch saliency estimation tasks. As an alternative, we want
to find out if it is instead better to train the networks solely
on more complex instrumental mixtures (ensemble record-
ings, see Section 3.2) as these are more similar to the final
test data.

We compare three training scenarios in our experiment.
First, we train the model solely using the isolated bass
tones (ISO+ dataset) to evaluate the generalization poten-
tial of the trained model towards mixture signals in the test
set. Secondly, we apply transfer learning, i. e., we pre-train
an initial model for bass saliency estimation using isolated
bass tracks (ISO+ dataset) and then fine-tune the model in
a second training step on the WJD+ dataset. In a third sce-
nario, we mix and shuffle the WJD+ and ISO+ datasets
and perform a single training step. The model trained only
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on the WJD+ dataset serves as baseline for comparison.
We train for 750 epochs for both training steps but apply
early stopping as detailed in Section 4.2 if possible.

The results are shown in Table 3. Accuracy values are
computed on a macro-level by averaging across all spec-
trogram frames of the test set files. We observe that a pitch
saliency model, which is only trained on isolated tones
of the target instrument, is not capable to generalize to
more complex mixtures as it performs poorly on the test
set (atest = 0.095). Combining pre-training on the isolated
note database with fine-tuning on the mixture dataset im-
proves the performance by around four percent on the test
set accuracy (atest = 0.542) compared to a baseline model,
which is only trained on the mixture recordings. The best
configuration improves on the test set accuracy by 6 per-
cent (atest = 0.561) compared to the baseline model. It
does not involve a pre-training step but uses a mix of iso-
lated and mixed recordings (ISO+ and WJD+) for training
instead.

The results of the transfer learning experiments suggest
that combining training data with different levels of com-
plexity, i. e., different amount of instrumental overlap, can
be useful to improve DNN-based models for pitch saliency
estimation in ensemble recordings. By using a mixture of
both isolated and mixed recordings in one training step, it
appears as if the neural network learns best to “focus” on
the targeted instrument. Future work could address a dif-
ferent order in the training process, i. e., first training on
the mixture tracks and then fine-tuning the model on the
isolated note recordings.

6. CONCLUSION

We investigated strategies for label propagation and trans-
fer learning in order to improve bass saliency estimation
using deep neural networks. We could show that unla-
beled feature vectors from datasets with a similar spec-
tral distribution as the target scenario can be mapped to-
wards labeled datasets to derive pitch labels. By combin-
ing labeled datasets and unlabeled datasets through label
propagation, we were able to improve the model’s accu-
racy by around six percent compared to a baseline model.
Similarly, we could show that by combining isolated note
recordings of the targeted instrument with mixture record-
ings as training set, we gain around five percent in accu-
racy. This joint training slightly outperformed our consid-
ered transfer learning strategy with two successive training
steps. Future work could deal with strategies on how to
combine frame-stacking (compare [1]), label propagation,
and transfer learning.

For a systematic bias–variance analysis of the given
modeling task, it remains challenging to define human
level performance as we only focus on frame-wise pitch
estimation here. Human experts, i. e., musicians or mu-
sicologists, are capable to generate near-perfect note-wise
transcriptions. This related task, however, involves listen-
ing to longer audio excerpts and allows to include addi-
tional cues from the metric structure, tone duration, and
local harmony.

Pre-
Training

Training atrain aval atest atest,12

- WJD+ (baseline) 0.665 0.614 0.508 0.589

- ISO+ 0.514 0.538 0.095 0.234
ISO+ WJD+ 0.652 0.603 0.542 0.614
- ISO+ & WJD+ 0.507 0.531 0.561 0.655

Table 3. Performance comparison with and without trans-
fer learning. All experiments were evaluated using the
WJD+-TEST dataset.
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